Nitrogen adsorption and desorption at iron pyrite FeS2{100} surfaces.
نویسندگان
چکیده
We have investigated the interaction of nitrogen with single-crystal iron pyrite FeS(2){100} surfaces in ultra-high vacuum. N(2) adsorbs molecularly at low temperatures, desorbing at 130 K, but does not adsorb dissociatively even at pressures up to 1 bar. Atomic surface N can, however, be obtained with nitrogen ions and/or excited neutral species, generated by passing N(2) through an ion gun. Substantial nitrogen-induced disorder is seen with both ions and neutrals, and no ordered N overlayers form; a decrease in the S/Fe ratio is seen when exposing to nitrogen ions. Recombinative desorption leads to temperature-programmed desorption peaks at 410 and 520-560 K which we associate with interstitial atomic N and substitutional ionic N, respectively, in the surface regions. Thermal repair of sputter damage necessitates segregation of bulk S to the surface, which, over repeated experiments, leads to gross cumulative damage to the bulk crystal. The desorption temperatures associated with recombinative desorption of atomic N from FeS(2){100} are significantly lower than those measured for Fe surfaces. This is linked to the inability of FeS(2){100} to dissociate N(2), but suggests that N(ads) will be significantly more able to react with other species than it is on Fe surfaces.
منابع مشابه
Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces
Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also produc...
متن کاملMechanistic aspects of pyrite oxidation in an oxidizing gaseous environment: an in situ HATR-IR isotope study.
The reaction of FeS2 (pyrite) with gaseous H2O, O2, and H2O/O2 was investigated using horizontal attenuated total reflection Fourier transform infrared spectroscopy (HATR-FTIR). Spectra were interpreted with the aid of hybrid molecular orbital/density functional theory calculations of sulfate-iron hydroxide clusters. Reaction of pyrite in gaseous H2O led primarily to the formation of iron hydro...
متن کاملPhase-pure iron pyrite nanocrystals for low-cost photodetectors
Earth-abundant iron pyrite (FeS2) shows great potential as a light absorber for solar cells and photodetectors due to their high absorption coefficient (>10(5) cm(-1)). In this paper, high-quality phase-pure and single crystalline pyrite nanocrystals were synthesized via facile, low-cost, and environment friendly hydrothermal method. The molar ratio of sulphur to iron and the reaction time play...
متن کاملCharge/discharge and Electrochemical Characteristics of Secondary Lithium/pyrite Battery
Iron disulfide (FeS2) is attractive as a positive electrode material in lithium batteries because of its low material cost, environmental non-toxicity, and high specific energy density. Furthermore, natural pyrite is a secondary product of the mining extraction of coal. For these reasons, natural and synthetic pyrites have been proposed as active cathode materials in secondary lithium batteries...
متن کاملPyrite-pyrrhotine redox reactions in nature
The origin in rocks of the common iron sulphides, pyrrhotine, Fe 1 xS and pyrite, FeS2 and their behaviour during geochemical processes is best considered using the simplified redox reaction: 2FeS ~-~ FeS2 + Fe 2 + + 2e . Thus pyrrhotine is more reduced than pyrite and is the stable iron sulphide formed from magmas except where relatively high oxygen fugacities result from falling pressure or h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 32 شماره
صفحات -
تاریخ انتشار 2012